L-Plastin Nanobodies Perturb Matrix Degradation, Podosome Formation, Stability and Lifetime in THP-1 Macrophages

نویسندگان

  • Sarah De Clercq
  • Ciska Boucherie
  • Joël Vandekerckhove
  • Jan Gettemans
  • Aude Guillabert
چکیده

Podosomes are cellular structures acting as degradation 'hot-spots' in monocytic cells. They appear as dot-like structures at the ventral cell surface, enriched in F-actin and actin regulators, including gelsolin and L-plastin. Gelsolin is an ubiquitous severing and capping protein, whereas L-plastin is a leukocyte-specific actin bundling protein. The presence of the capping protein CapG in podosomes has not yet been investigated. We used an innovative approach to investigate the role of these proteins in macrophage podosomes by means of nanobodies or Camelid single domain antibodies. Nanobodies directed against distinct domains of gelsolin, L-plastin or CapG were stably expressed in macrophage-like THP-1 cells. CapG was not enriched in podosomes. Gelsolin nanobodies had no effect on podosome formation or function but proved very effective in tracing distinct gelsolin populations. One gelsolin nanobody specifically targets actin-bound gelsolin and was effectively enriched in podosomes. A gelsolin nanobody that blocks gelsolin-G-actin interaction was not enriched in podosomes demonstrating that the calcium-activated and actin-bound conformation of gelsolin is a constituent of podosomes. THP-1 cells expressing inhibitory L-plastin nanobodies were hampered in their ability to form stable podosomes. Nanobodies did not perturb Ser5 phosphorylation of L-plastin although phosphorylated L-plastin was highly enriched in podosomes. Furthermore, nanobody-induced inhibition of L-plastin function gave rise to an irregular and unstable actin turnover of podosomes, resulting in diminished degradation of the underlying matrix. Altogether these results indicate that L-plastin is indispensable for podosome formation and function in macrophages.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metalloproteinase MT1-MMP islets act as memory devices for podosome reemergence

Podosomes are dynamic cell adhesions that are also sites of extracellular matrix degradation, through recruitment of matrix-lytic enzymes, particularly of matrix metalloproteinases. Using total internal reflection fluorescence microscopy, we show that the membrane-bound metalloproteinase MT1-MMP is enriched not only at podosomes but also at distinct "islets" embedded in the plasma membrane of p...

متن کامل

Regulation of podosome dynamics by WASp phosphorylation: implication in matrix degradation and chemotaxis in macrophages.

Podosomes, adhesion structures capable of matrix degradation, have been linked with the ability of cells to perform chemotaxis and invade tissues. Wiskott-Aldrich Syndrome protein (WASp), an effector of the RhoGTPase Cdc42 and a Src family kinase substrate, regulates macrophage podosome formation. In this study, we demonstrate that WASp is active in podosomes by using TIRF-FRET microscopy. Phar...

متن کامل

Dendritic Cell Podosome Dynamics Does Not Depend on the F-actin Regulator SWAP-70

In addition to classical adhesion structures like filopodia or focal adhesions, dendritic cells similar to macrophages and osteoclasts assemble highly dynamic F-actin structures called podosomes. They are involved in cellular processes such as extracellular matrix degradation, bone resorption by osteoclasts, and trans-cellular diapedesis of lymphocytes. Besides adhesion and migration, podosomes...

متن کامل

Src-mediated phosphorylation of mammalian Abp1 (DBNL) regulates podosome rosette formation in transformed fibroblasts.

Podosomes are dynamic actin-based structures that mediate adhesion to the extracellular matrix and localize matrix degradation to facilitate cell motility and invasion. Drebrin-like protein (DBNL), which is homologous to yeast mAbp1 and is therefore known as mammalian actin-binding protein 1 (mAbp1), has been implicated in receptor-mediated endocytosis, vesicle recycling and dorsal ruffle forma...

متن کامل

Three-dimensional migration of macrophages requires Hck for podosome organization and extracellular matrix proteolysis.

Tissue infiltration of phagocytes exacerbates several human pathologies including chronic inflammations or cancers. However, the mechanisms involved in macrophage migration through interstitial tissues are poorly understood. We investigated the role of Hck, a Src-family kinase involved in the organization of matrix adhesion and degradation structures called podosomes. In Hck(-/-) mice submitted...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013